A detailed comparison of analysis processes for MCC-IMS data in disease classification—Automated methods can replace manual peak annotations

نویسندگان

  • Salome Horsch
  • Dominik Kopczynski
  • Elias Kuthe
  • Jörg Ingo Baumbach
  • Sven Rahmann
  • Jörg Rahnenführer
چکیده

MOTIVATION Disease classification from molecular measurements typically requires an analysis pipeline from raw noisy measurements to final classification results. Multi capillary column-ion mobility spectrometry (MCC-IMS) is a promising technology for the detection of volatile organic compounds in the air of exhaled breath. From raw measurements, the peak regions representing the compounds have to be identified, quantified, and clustered across different experiments. Currently, several steps of this analysis process require manual intervention of human experts. Our goal is to identify a fully automatic pipeline that yields competitive disease classification results compared to an established but subjective and tedious semi-manual process. METHOD We combine a large number of modern methods for peak detection, peak clustering, and multivariate classification into analysis pipelines for raw MCC-IMS data. We evaluate all combinations on three different real datasets in an unbiased cross-validation setting. We determine which specific algorithmic combinations lead to high AUC values in disease classifications across the different medical application scenarios. RESULTS The best fully automated analysis process achieves even better classification results than the established manual process. The best algorithms for the three analysis steps are (i) SGLTR (Savitzky-Golay Laplace-operator filter thresholding regions) and LM (Local Maxima) for automated peak identification, (ii) EM clustering (Expectation Maximization) and DBSCAN (Density-Based Spatial Clustering of Applications with Noise) for the clustering step and (iii) RF (Random Forest) for multivariate classification. Thus, automated methods can replace the manual steps in the analysis process to enable an unbiased high throughput use of the technology.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using the Expectation Maximization Algorithm with Heterogeneous Mixture Components for the Analysis of Spectrometry Data

Coupling a multi-capillary column (MCC) with an ion mobility (IM) spectrometer (IMS) opened a multitude of new application areas for gas analysis, especially in a medical context, as volatile organic compounds (VOCs) in exhaled breath can hint at a person’s state of health. To obtain a potential diagnosis from a raw MCC/IMS measurement, several computational steps are necessary, which so far ha...

متن کامل

MCC-IMS data analysis using automated spectra processing and explorative visualisation methods

from the single peak intensities but enable the visualisation of a high number of them. Furthermore they show statistical information like median and mean as well as ranges and possibly outliers.

متن کامل

Automatic measurement of instantaneous changes in the walls of carotid artery with sequential ultrasound images

Introduction: This study presents a computerized analyzing method for detection of instantaneous changes of far and near walls of the common carotid artery in sequential ultrasound images by applying the maximum gradient algorithm. Maximum gradient was modified and some characteristics were added from the dynamic programming algorithm for our applications. Methods: The algorithm was evaluat...

متن کامل

Peak Detection Method Evaluation for Ion Mobility Spectrometry by Using Machine Learning Approaches

Ion mobility spectrometry with pre-separation by multi-capillary columns (MCC/IMS) has become an established inexpensive, non-invasive bioanalytics technology for detecting volatile organic compounds (VOCs) with various metabolomics applications in medical research. To pave the way for this technology towards daily usage in medical practice, different steps still have to be taken. With respect ...

متن کامل

Computational Methods for Metabolomic Data Analysis of Ion Mobility Spectrometry Data—Reviewing the State of the Art

Ion mobility spectrometry combined with multi-capillary columns (MCC/IMS) is a well known technology for detecting volatile organic compounds (VOCs). We may utilize MCC/IMS for scanning human exhaled air, bacterial colonies or cell lines, for example. Thereby we gain information about the human health status or infection threats. We may further study the metabolic response of living cells to ex...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017